Sparsity Pattern Recovery in Compressed Sensing
نویسنده
چکیده
Sparsity Pattern Recovery in Compressed Sensing by Galen Reeves Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences University of California, Berkeley Professor Michael Gastpar, Chair The problem of recovering sparse signals from a limited number of measurements is now ubiquitous in signal processing, statistics, and machine learning. A natural question of fundamental interest is that of what can and cannot be recovered in the presence of noise. This thesis provides a sharp characterization for the task of sparsity pattern recovery (also known as support recovery). Using tools from information theory, we find a sharp separation into two problem regimes – one in which the problem is fundamentally noiselimited, and a more interesting one in which the problem is limited by the behavior of the sparse components themselves. This analysis allows us to identify settings where existing computationally efficient algorithms, such as the LASSO or approximate message passing, are optimal as well as other settings where these algorithms are highly suboptimal. We compare our results to predictions of phase transitions made via the powerful but heuristic replica method, and find that our rigorous bounds confirm some of these predictions. The remainder of the thesis explores extensions of our bounds to various scenarios. We consider specially structured sampling matrices and show how such additional structure can make a key difference, analogous to the role of diversity in wireless communications. Finally, we illustrate how the new bounding techniques introduced in this thesis can be used to establish information-theoretic secrecy results for certain communication channel models that involve eavesdroppers.
منابع مشابه
A Sharp Sufficient Condition for Sparsity Pattern Recovery
Sufficient number of linear and noisy measurements for exact and approximate sparsity pattern/support set recovery in the high dimensional setting is derived. Although this problem as been addressed in the recent literature, there is still considerable gaps between those results and the exact limits of the perfect support set recovery. To reduce this gap, in this paper, the sufficient con...
متن کاملEfficient Sparsity Pattern Recovery
The theory of compressed sensing shows that sparsity pattern (or support) of a sparse signal can be recovered from a small number of appropriate linear projections (samples). Unfortunately, as soon as noise is added, the number of required samples exceeds the full signal dimension, rendering compressed sensing ineffective. In recent work, we have shown that this can be fixed if a small distorti...
متن کاملUnified Theory for Recovery of Sparse Signals in a General Transform Domain
Compressed sensing provided a new sampling paradigm for sparse signals. Remarkably, it has been shown that practical algorithms provide robust recovery from noisy linear measurements acquired at a near optimal sample rate. In real-world applications, a signal of interest is typically sparse not in the canonical basis but in a certain transform domain, such as the wavelet or the finite differenc...
متن کاملBayesian compressed sensing with new sparsity-inducing prior
Sparse Bayesian learning (SBL) is a popular approach to sparse signal recovery in compressed sensing (CS). In SBL, the signal sparsity information is exploited by assuming a sparsity-inducing prior for the signal that is then estimated using Bayesian inference. In this paper, a new sparsity-inducing prior is introduced and efficient algorithms are developed for signal recovery. The main algorit...
متن کاملNecessary and Sufficient Conditions on Sparsity Pattern Recovery
The problem of detecting the sparsity pattern of a k-sparse vector in Rn from m random noisy measurements is of interest in many areas such as system identification, denoising, pattern recognition, and compressed sensing. This paper addresses the scaling of the number of measurements m, with signal dimension n and sparsity-level nonzeros k, for asymptotically-reliable detection. We show a neces...
متن کامل